Abstract

Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network.

Highlights

  • Network theory has recently gained recognition as a useful framework in which to consider the brain in terms of its structure and function

  • In network analyses of functional magnetic resonance images, each voxel can be treated as a node in a network with connections between nodes defined by functional activity [1,2,3]

  • Much like the spread of a disease in a social network, we propose that brain networks most likely process information via parallel duplication along unrestricted walks

Read more

Summary

Introduction

Network theory has recently gained recognition as a useful framework in which to consider the brain in terms of its structure and function. In network analyses of functional magnetic resonance images (fMRI), each voxel can be treated as a node in a network with connections between nodes defined by functional activity [1,2,3]. Two foci in the brain may not have a direct neuronal connection, a functional connection may be inferred based on fMRI time signal correlations [4]. The focus of the outcomes from such an analysis is on the interconnections between areas rather than on the areas themselves. An advantage of using network theory methodologies over traditional fMRI analyses is that the brain is treated as an integrated system rather than a collection of individual components [5]. Network analyses can simultaneously characterize properties of the network as a whole as well as the role each node plays in the network

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call