Abstract
An investigation of heat transfer and friction during hot forging has been performed using experimental and analytical techniques. The interface heat transfer coefficient was measured in experiments in which two flat H-13 tool steel dies were heated to different initial temperatures and brought together under varying pressure levels, or the two dies were heated to the same temperature and used to upset aluminum alloy 2024-0 rings under both isothermal as well as nonisothermal conditions. The coupling between heat transfer and friction during hot forging has been studied by analysis of data from the ring experiments and the generation of heat transfer coefficient and friction shear factor calibration curves derived from finite element simulations. By this means, the effects of forging pressure, deformation rate, and lubrication on the heat transfer coefficient and the friction shear factor were established. It was shown that, for the geometry studied, the value of the friction shear factor is independent of the heat transfer coefficient and vice versa, at least to a first order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.