Abstract

AbstractWe study the mean‐standard deviation minimum cost flow (MSDMCF) problem, where the objective is minimizing a linear combination of the mean and standard deviation of flow costs. Due to the nonlinearity and nonseparability of the objective, the problem is not amenable to the standard algorithms developed for network flow problems. We prove that the solution for the MSDMCF problem coincides with the solution for a particular mean‐variance minimum cost flow (MVMCF) problem. Leveraging this result, we propose bisection (BSC), Newton–Raphson (NR), and a hybrid (NR‐BSC)—method seeking to find the specific MVMCF problem whose optimal solution coincides with the optimal solution for the given MSDMCF problem. We further show that this approach can be extended to solve more generalized nonseparable parametric minimum cost flow problems under certain conditions. Computational experiments show that the NR algorithm is about twice as fast as the CPLEX solver on benchmark networks generated with NETGEN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.