Abstract

In this paper, we use the cycle basis from graph theory to reduce the size of the decision variable space of optimal network flow problems by eliminating the aggregated flow conservation constraint. We use a minimum cost flow problem and an optimal power flow problem with generation and storage at the nodes to demonstrate our decision variable reduction method. The main advantage of the proposed technique is that it retains the natural sparse&#x002F decomposable structure of network flow problems. As such, the reformulated problems are still amenable to distributed solutions. We demonstrate this by proposing a distributed alternating direction method of multipliers &#x0028 ADMM &#x0029 solution for a minimum cost flow problem. We also show that the communication cost of the distributed ADMM algorithm for our proposed cycle-based formulation of the minimum cost flow problem is lower than that of a distributed ADMM algorithm for the original arc-based formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.