Abstract

We find that biorthogonal quantum mechanics with a scalar product that counts both absorbed and emitted particles leads to covariant position operators with localized eigenvectors. In this manifestly covariant formulation the probability for a transition from a one-photon state to a position eigenvector is the first order Glauber correlation function, bridging the gap between photon counting and the sensitivity of light detectors to electromagnetic energy density. The position eigenvalues are identified as the spatial parameters in the canonical quantum field operators and the position basis describes an array of localized devices that instantaneously absorb and re-emit bosons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.