Abstract
Previous generation low light detection platforms have been based on the photomultiplier tube (PMT) or the silicon single photon counting module (SPCM) from Perkin Elmer'. A new generation of silicon CMOS compatible photon counting sensors are being developed offering high quantum efficiency, low operating voltage, high levels of robustness and compatibility with CMOS processing for integration into large format imaging arrays. This latest generation yields a new detector for emerging applications which demand photon counting performance providing high performance and flexibility not possible to date. We describe a 4-channel photon detection platform, which allows the use of 4 separate photon counting detectors in either free space or fibre-coupled mode. The platform is scalable up to 16 channels with plug in modules allowing active quenching or Peltier cooling as required. A graphical user interface allows feedback and control of all device parameters. We show a novel ability to integrate separate detection modules to extend the dynamic range of the system. This allows a PIN or APD mode detector to be used alongside sensitive photon counting detectors. An advanced FPGA and microcontroller interface has been designed which allows simultaneous time binning of counting rates and readout of the analog signals when used with linear detectors. This new architecture will be discussed, presenting a full characterization of count rate, quantum efficiency, time binning and sensitivity across the broad spectrum of light flux applicable to PIN diodes, APDs and Geiger-mode photon counting sensors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have