Abstract
We study noiseless subsystems on collective rotation channels of qudits, i.e., quantum channels with operators in the set ${\mathcal E}(d,n) = \{ U^{\otimes n}: U \in {\mathrm{SU}}(d)\}.$ This is done by analyzing the decomposition of the algebra ${\mathcal A}(d,n)$ generated by ${\mathcal E}(d,n)$. We summarize the results for the channels on qubits ($d=2$), and obtain the maximum dimension of the noiseless subsystem that can be used as the quantum error correction code for the channel. Then we extend our results to general $d$. In particular, it is shown that the code rate, i.e., the number of protected qudits over the number of physical qudits, always approaches 1 for a suitable noiseless subsystem. Moreover, one can determine the maximum dimension of the noiseless subsystem by solving a non-trivial discrete optimization problem. The maximum dimension of the noiseless subsystem for $d = 3$ (qutrits) is explicitly determined by a combination of mathematical analysis and the symbolic software Mathematica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.