Abstract
Trotter product formulas constitute a cornerstone quantum Hamiltonian simulation technique. However, the efficient implementation of Hamiltonian evolution of nested commutators remains an under explored area. In this work, we construct optimized product formulas of orders 3–6 approximating the exponential of a commutator of two arbitrary operators in terms of the exponentials of the operators involved. The new schemes require a reduced number of exponentials and thus provide more efficient approximations than other previously published alternatives. They can also be used as basic methods in recursive procedures to increase the order of approximation. We expect this research will improve the efficiency of quantum control protocols, as well as quantum algorithms such as the Zassenhaus-based product formula, Magnus operator-based time-dependent simulation, and product formula schemes with modified potentials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have