Abstract
Distinct biotic interactions in multi-species communities are a ubiquitous force in the natural ecosystem, and this force is an essential determinant of community stability and species coexistence outcomes. We conduct numerical simulations and bifurcation analysis of partial differential equations to gain better understanding and ecological insights into how predation (a), predator handling time (h), and local dispersal affect multi-species community dynamics. This system consists of resource-mutualist-exploiter-competitor interactions and local dispersal. From the inspection of our numerical simulations and co-dimension one bifurcation analysis findings, we discover several critical values that correspond to transcritical bifurcation, subcritical and supercritical Hopf bifurcations. This occurs as we vary the bifurcation parameters a and h in this complex ecological system under symmetric and asymmetric dispersal scenarios. Furthermore, the interplay between these local bifurcation points results in an exciting co-dimension two bifurcations, i.e., Bogdanov-Takens and cusp bifurcation points, respectively, which act as the synchronization points in this complex ecological system. From an ecological viewpoint, we find that (i) the effect of the no-dispersal scenario supports the maintenance of species biodiversity when the predation strength is moderate; (ii) symmetric dispersal induces both subcritical and supercritical Hopf bifurcation and support species diversity for moderate predation strength; and (iii) asymmetric dispersal promotes species diversity as it simplifies the bifurcation changes in dynamics by eliminating the subcritical bifurcations that trigger uncertainty, and this dispersal mechanism mediates species coexistence outcomes. Fundamentally, stable limit cycles have been reported as predator handling time varies in some ecological models; however, we observed in our bifurcation analysis the emergence of the unstable limit cycle as predator handling time changes. We discover that intense predator handling time destabilizes this complex ecological community. In general, our results demonstrate the influential roles of predation, predator handling time, and local dispersal in determining this system’s coexistence dynamics. This knowledge provides a better understanding of species conservation and biological control management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.