Abstract
A numerical simulation was carried out in order to investigate aroma compounds recovery from aqueous phase using an organic solvent. A hollow-fiber membrane contactor with small packing fraction was selected to be used in the study. Momentum, continuity and mass transfer equations were solved simultaneously utilizing finite element method. The simulation results showed that solving the Navier–Stokes equations has significantly diminished average deviation about 55% compared to Happle’s velocity model. Simulation results revealed that mass transfer resistance increases along the contactor length in both tube and shell sides. It seems that it is due to the increasing thickness of the boundary layer. Enhancement of the solvent velocity could result in increasing mass transfer rate through the membrane. However, it reduced the extraction efficiency of aroma compounds. Moreover, recovery of 2-hexanal was higher than benzaldehyde due to its higher partition coefficient. Furthermore, n-hexane has higher extraction efficiency than miglyol because of lower Schmidt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing: Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.