Abstract

The efficiency of gas removal using hollow fiber membrane (HFM) contactors and liquid solvents is determined by several factors. The liquid film resistance has been identified as one of the important factors affecting the overall mass transfer coefficient. The present work describes the use of spherical glass beads as additional packing in the shell (solvent) side to act as solid baffles which should impart stirring effect in the flowing solvent and increase its velocity. These two effects should decrease the liquid film resistance and consequently enhance the gas removal efficiency. Two types of custom-made hollow fiber membrane contactors (HFMC) were constructed from thick-walled acrylic tube (20 mm ID, OD 30 mm) and equipped with the commercially available poly(tetrafluoroethylene-co-perfluorinated alkyl vinyl ether) (PFA) hollow fibers. In one type of the contactors, glass beads were introduced in the shell side. The two types of contactors (with and without beads) were tested and compared in terms of CO2 removal efficiency from gas mixtures (5% CO2 − 95% CH4) using aqueous sodium hydroxide and several amine solutions. Different parameters were studied to evaluate the performance of the membrane contactors at feed gas pressures up to 25 bars. The obtained results indicated an increase of up to 21% enhancement in CO2 removal efficiency when the shell compartment was packed with the glass beads. The results obtained from the overall mass transfer coefficient model showed good agreement with those of the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.