Abstract
The tumor microenvironment constitutes a complex system shaped by the intricate interactions among tumor cells, immune cells, and cytokines. Within this environment, the interplay between immune cells and cytokines is crucial in influencing tumor growth and progression. Despite advancements in clinical tumor immunotherapy, there remains a gap in comprehensive simulations of tumor immune responses, particularly regarding cytokine-driven processes. This study aims toaddress this gap by investigating the regulatory interactions among tumor cells, immune cells, and cytokines to simulate the complexities of tumor immunotherapy. We develop a comprehensive modeling and computational framework incorporating PD-1 inhibitors and interleukin-10 (IL-10) antibodies. Through detailed mathematical analysis, we elucidate the impact of changes in the immune microenvironment on tumor cellsnumber. Our findings highlight the significant therapeutic effect of anti-PD-1 and IL-10 inhibitors, with increased drug dosage correlating with a reduction in tumor burden. Furthermore, combination therapy demonstrates a marked extension of survival with reduced dosages compared to monotherapy. Based on model simulations, we proposed prognostic predictions by assessing the microenvironmental status before treatment. The findings indicate a promising method forenhancing treatment effectiveness and offering potentialadvantages to patients receiving tumor immunotherapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have