Abstract
A number of hypotheses were formulated using the properties of an asymptotic solution of boundary-value problems of the three-dimensional micropolar (moment asymmetric) theory of elasticity for areas with one geometrical parameter being substantially smaller than the other two (plates and shells). A general theory of bending deformation of micropolar elastic thin plates with independent fields of displacements and rotations is constructed. In the constructed model of a micropolar elastic plate, transverse shear strains are fully taken into account. A problem of determining the stress-strain state in bending deformation of micropolar elastic thin rectangular plates is considered. The numerical analysis reveals that plates made of a micropolar elastic material have high strength and stiffness characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have