Abstract

This study developed a model for the spread of measles based on the SEIR model by adding the factors of using the first dose of vaccination, the second dose of vaccination, and treatment. Making this model begins with making a compartment diagram of the spread of the disease, which consists of seven subpopulations, namely susceptible subpopulations, subpopulations that have received the first dose of vaccination, subpopulations that have received the second dose vaccination, exposed subpopulations, infected subpopulations, subpopulations that have received treatment, and subpopulations healed. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R_0) are obtained. Analysis of the stability of the disease-for equilibrium point was locally asymptotically stable when (R_0)<1. The backward bifurcation analysis occurs when (R_C) is present and R_C<R_0. Numerical simulations of disease-free and endemic equilibrium points are carried out to provide an overview of the results analyzed with parameter values from several sources. The results of the numerical simulation are in line with the analysis carried out. From the model analysis, the disease will disappear more quickly when the level of vaccine used and individuals who carry out treatment are enlarged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.