Abstract

In this paper, we propose a COVID-19 epidemic model with quarantine class. The model contains 6 sub-populations, namely the susceptible (S), exposed (E), infected (I), quarantined (Q), recovered (R), and death (D) sub-populations. For the proposed model, we show the existence, uniqueness, non-negativity, and boundedness of solution. We obtain two equilibrium points, namely the disease-free equilibrium (DFE) point and the endemic equilibrium (EE) point. Applying the next generation matrix, we get the basic reproduction number (R0). It is found that R0 is inversely proportional to the quarantine rate as well as to the recovery rate of infected subpopulation. The DFE point always exists and if R0 < 1 then the DFE point is asymptotically stable, both locally and globally. On the other hand, if R0 > 1 then there exists an EE point, which is globally asymptotically stable. Here, there occurs a forward bifurcation driven by R0. The dynamical properties of the proposed model have been verified our numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.