Abstract
In this paper, an eco-epidemiological predator–prey model with time delay representing the gestation period of the predator is investigated. In the model, it is assumed that the predator population suffers a transmissible disease by contact. By analyzing corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease-free equilibrium, the prey–infected predator equilibrium and the endemic-coexistence equilibrium are established. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global asymptotic stability of the predator-extinction equilibrium, the disease-free equilibrium, the prey–infected predator equilibrium and the endemic-coexistence equilibrium of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.