Abstract

In this paper, an eco-epidemiological model with Holling type-III functional response and a time delay representing the gestation period of the predators is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. The disease basic reproduction number is obtained. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease-free equilibrium and the endemic-coexistence equilibrium are established, respectively. By using the persistence theory on infinite dimensional systems, it is proved that if the disease basic reproduction number is greater than unity, the system is permanent. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the endemic-coexistence equilibrium, the disease-free equilibrium and the predator-extinction equilibrium of the system, respectively. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.