Abstract
In this paper, a delayed Susceptible‐Exposed‐Infectious‐Susceptible (SEIS) infectious disease model with logistic growth and saturation incidence is investigated, where the time delay describes the latent period of the disease. By analyzing corresponding characteristic equations, the local stability of a disease‐free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using the persistence theory for infinite dimensional dynamic systems, it is proved that if the basic reproduction number is greater than unity, the system is permanent. By means of suitable Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the disease‐free equilibrium and the endemic equilibrium, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.