Abstract
In this paper, an eco-epidemiological model with time delay representing the gestation period of the predator is investigated. In the model, it is assumed that the predator population suffers a transmissible disease and the infected predators may recover from the disease and become susceptible again. By analyzing corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease-free and coexistence equilibria are established, respectively. By means of Lyapunov functionals and LaSalle’s invariance principle, sufficient conditions are obtained for the global stability of the coexistence equilibrium, the disease-free equilibrium and the predator-extinct equilibrium of the system, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.