Abstract
Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T3) from the less bioactive thyroxin (T4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T3/T4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have