Abstract

As spin-orbit-torque magnetic random-access memory (SOT-MRAM) is gathering great interest as the next-generation low-power and high-speed on-chip cache memory applications, it is critical to analyze the magnetic tunnel junction (MTJ) properties needed to achieve sub-ns, and ~fJ write operation when integrated with CMOS access transistors. In this paper, a 2T-1MTJ cell-level modeling framework suggests that large spin Hall conductivity and moderate SOT material sheet resistance are preferred. We also benchmark write energy and speed performances of SOT-MRAM cells using several existing SOT materials, such as Pt, β -W, and Bi x Se (1−x) based on the established framework. This work will provide essential guidelines for SOT-MRAM materials and device research in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.