Abstract
The primary objective of this study is the computation of the matching polynomials of a number of symmetric, semisymmetric, double group graphs, and solids in third and higher dimensions. Such computations of matching polynomials are extremely challenging problems due to the computational and combinatorial complexity of the problem. We also consider a series of recursive graphs possessing symmetries such as D2h-polyacenes, wheels, and fans. The double group graphs of the Möbius types, which find applications in chemically interesting topologies and stereochemistry, are considered for the matching polynomials. Hence, the present study features a number of vertex- or edge-transitive regular graphs, Archimedean solids, truncated polyhedra, prisms, and 4D and 5D polyhedra. Such polyhedral and Möbius graphs present stereochemically and topologically interesting applications, including in chirality, isomerization reactions, and dynamic stereochemistry. The matching polynomials of these systems are shown to contain interesting combinatorics, including Stirling numbers of both kinds, Lucas polynomials, toroidal tree-rooted map sequences, and Hermite, Laguerre, Chebychev, and other orthogonal polynomials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have