Abstract
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre polynomials—can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.