Abstract
We generalize two main theorems of matching polynomials of undirected simple graphs, namely, real-rootedness and the Heilmann-Lieb root bound. Viewing the matching polynomial of a graph $G$ as the independence polynomial of the line graph of $G$, we determine conditions for the extension of these theorems to the independence polynomial of any graph. In particular, we show that a stability-like property of the multivariate independence polynomial characterizes claw-freeness. Finally, we give and extend multivariate versions of Godsil's theorems on the divisibility of matching polynomials of trees related to $G$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.