Abstract

The demand of Unmanned Aerial Vehicle (UAV) to monitor natural disasters extends its use to multiple civil missions. While the use of remotely control UAV reduces the human casualties' rates in hazardous environments, it is reported that most of UAV accidents are caused by human factor errors. In order to automate UAVs, several approaches to path planning for UAVs, mainly based on Genetic Algorithm (GA), have been proposed. However, none of the proposed paradigms optimally solve the path planning problem with contrasting objectives. We are proposing a Master-Slave Parallel Vector-Evaluated Genetic Algorithm (MSPVEGA) to solve the path planning problem. MSPVEGA takes advantage of the advanced computational capabilities to process multiple GAs concurrently. In our present experimental set-up, the MSPVEGA gives optimal results for UAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.