Abstract

Unmanned aerial vehicle (UAV) path planning plays an important role in UAV flight, and an effective algorithm is needed to realize UAV path planning. The sand cat algorithm is characterized by simple parameter setting and easy implementation. However, the convergence speed is slow, easy to fall into the local optimum. In order to solve these problems, a novel sand cat algorithm incorporating learning behaviors (LSCSO) is proposed. LSCSO is inspired by the life habits and learning ability of sand cats and incorporates a new position update strategy into the basic Sand Cat Optimization Algorithm, which maintains the diversity of the population and improves the convergence ability during the optimization process. Finally, LSCSO is applied to the challenging UAV 3D path planning with cubic B-spline interpolation to generate a smooth path, and the proposed algorithm is compared with a variety of other competing algorithms. The experimental results show that LSCSO has excellent optimization-seeking ability and plans a safe and feasible path with minimal cost consideration among all the compared algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.