Abstract

Unmanned aerial vehicle (UAV) path planning problem is an important component of UAV mission planning system, which needs to obtain optimal route in the complicated field. To solve this problem, a novel hybrid algorithm called HSGWO-MSOS is proposed by combining simplified grey wolf optimizer (SGWO) and modified symbiotic organisms search (MSOS). In the proposed algorithm, the exploration and exploitation abilities are combined efficiently. The phase of the GWO algorithm is simplified to accelerate the convergence rate and retain the exploration ability of the population. The commensalism phase of the SOS algorithm is modified and synthesized with the GWO to improve the exploitation ability. In addition, the convergence analysis of the proposed HSGWO-MSOS algorithm is presented based on the method of linear difference equation. The cubic B-spline curve is used to smooth the generated flight route and make the planning path be suitable for the UAV. The simulation experimental results show that the HSGWO-MSOS algorithm can acquire a feasible and effective route successfully, and its performance is superior to the GWO, SOS and SA algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.