Abstract
Let $$f:S\rightarrow B$$ be a fibration of curves and let $$f_*\omega _{S/B}={{\mathcal {U}}}\oplus {{\mathcal {A}}}$$ be the second Fujita decomposition of f. In this paper we study a kind of Massey products, which are defined as infinitesimal invariants by the cohomology of a curve, in relation to the monodromy of certain subbundles of $${{\mathcal {U}}}$$. The main result states that their vanishing on a general fibre of f implies that the monodromy group acts faithfully on a finite set of morphisms and is therefore finite. In the last part we apply our result in terms of the normal function induced by the Ceresa cycle. On the one hand, we prove that the monodromy group of the whole $${{\mathcal {U}}}$$ of hyperelliptic fibrations is finite (giving another proof of a result due to Luo and Zuo). On the other hand, we show that the normal function is non torsion if the monodromy is infinite (this happens e.g. in the examples shown by Catanese and Dettweiler).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.