Abstract

We consider a locally uniformly strictly elliptic second order partial differential operator in Rd, d≥2, with low regularity assumptions on its coefficients, as well as an associated Hunt process and semigroup. The Hunt process is known to solve a corresponding stochastic differential equation that is pathwise unique. In this situation, we study the relation of invariance, infinitesimal invariance, recurrence, transience, conservativeness and Lr-uniqueness, and present sufficient conditions for non-existence of finite infinitesimally invariant measures as well as finite invariant measures. Our main result is that recurrence implies uniqueness of infinitesimally invariant measures, as well as existence and uniqueness of invariant measures, both in subclasses of locally finite measures. We can hence make in particular use of various explicit analytic criteria for recurrence that have been previously developed in the context of (generalized) Dirichlet forms and present diverse examples and counterexamples for uniqueness of infinitesimally invariant, as well as invariant measures and an example where L1-uniqueness fails for one infinitesimally invariant measure but holds for another and pathwise uniqueness holds. Furthermore, we illustrate how our results can be applied to related work and vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.