Abstract

AbstractIn the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of martingales from a compensated-covariation stable family. This enables us to consider Lévy processes with both jump and Gaussian part. It is well known that for multiple integrals w.r.t. the Brownian motion such product formulas exist without further integrability conditions on the kernels. However, if a jump part is present, this is, in general, false. Therefore, we provide here sufficient conditions on the kernels which allow us to establish product formulas. As an application, we obtain explicit expressions for the expectation of products of iterated integrals, as well as for the moments and the cumulants for stochastic integrals w.r.t. the random measure. Based on these expressions, we show a central limit theorem for the long time behaviour of a class of stochastic integrals. Finally, we provide methods to calculate the number of summands in the product formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.