Abstract

ABSTRACTFree and open access to the Landsat archive has enabled the implementation of national and global terrestrial monitoring projects. Herein, we summarize a project characterizing the change history of Canada’s forested ecosystems with a time series of data representing 1984–2012. Using the Composite2Change approach, we applied spectral trend analysis to annual best-available-pixel (BAP) surface reflectance image composites produced from Landsat TM and ETM+ imagery. A total of 73,544 images were used to produce 29 annual image composites, generating ∼400 TB of interim data products and resulting in ∼25 TB of annual gap-free reflectance composites and change products. On average, 10% of pixels in the annual BAP composites were missing data, with 86% of pixels having data gaps in two consecutive years or fewer. Change detection overall accuracy was 89%. Change attribution overall accuracy was 92%, with higher accuracy for stand-replacing wildfire and harvest. Changes were assigned to the correct year with an accuracy of 89%. Outcomes of this project provide baseline information and nationally consistent data source to quantify and characterize changes in forested ecosystems. The methods applied and lessons learned build confidence in the products generated and empower others to develop or refine similar satellite-based monitoring projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call