Abstract

The form of the eigenstates of an atom coupled to a cavity mode displaying a three dimensional periodic profile are obtained. It is shown that the quantized motion leads to degenerate states where the atomic degrees of freedom are masked, that is, upon detection of one component of this composite system the others remain in an entangled state. When the system is extended to include drive and dissipation it is found to undergo a dissipative quantum phase transition at a critical drive amplitude. Unlike other phase transitions reported in the literature, the degeneracy prepares the system in a superposition of incompatible states upon detection of the electromagnetic field. Probing the field hints at an order above the transition point that, due to state masking, allows for atomic coherence to survive at long times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.