Abstract
We investigate the steady-state quantum phases and associated collective phenomena of an open Tavis–Cummings (TC) model driven by a two-photon source. The standard (non-dissipative) TC model describes the quantum phases of an ensemble of N q two-level quantum emitters interacting with a single-mode electromagnetic field. The interplay among coherent driving, dissipation, and dipole interactions of the open TC model results in emergent collective phenomena, leading to a dissipative or non-equilibrium phase transition from the normal to the superradiant phase. We solve the Liouvillian equation analytically using the semi-classical mean-field approximation. We carry out stability analysis of the steady-state phases and determine the phase boundary. The use of Holstein–Primakoff transformation in the thermodynamic limit reduces the system to an effective coupled-oscillator model, the solution of which yields collective modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.