Abstract
We study the dissipative quantum phase transition (QPT) in a biased Tavis–Cummings model consisting of an ensemble of two-level systems (TLSs) interacting with a cavity mode, where the TLSs are pumped by a drive field. In our proposal, we use a dissipative TLS ensemble and an active cavity with effective gain. In the weak drive-field limit, the QPT can occur under the combined actions of the loss and gain of the system. Owing to the active cavity, the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble. Also, we propose to implement our scheme based on the dissipative nitrogen-vacancy (NV) centers coupled to an active optical cavity made from the gain-medium-doped silica. Furthermore, we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.