Abstract

Despite many advances in research on photosynthetic carbon fixation in marine diatoms, the biophysical and biochemical mechanisms of extracellular polysaccharide production remain significant challenges to be resolved at the molecular scale in order to proceed toward an understanding of their functions at the cellular level, as well as their interactions and fate in the ocean. This review covers studies of diatom extracellular polysaccharides using atomic force microscopy (AFM) imaging and the quantification of physical forces. Following a brief summary of the basic principle of the AFM experiment and the first AFM studies of diatom extracellular polymeric substance (EPS), we focus on the detection of supramolecular structures in polysaccharide systems produced by marine diatoms. Extracellular polysaccharide fibrils, attached to the diatom cell wall or released into the surrounding seawater, form distinct supramolecular assemblies best described as gel networks. AFM makes characterization of the diatom polysaccharide networks at the micro and nanometric scales and a clear distinction between the self-assembly and self-organization of these complex systems in marine environments possible.

Highlights

  • Diatoms, important marine photoautotrophic protists that account for up to 25% of the primary production on Earth [1], produce large quantities of extracellular polymeric substances (EPS), consisting predominantly of polysaccharides [2]

  • We intend to review recent atomic force microscopy (AFM) studies of diatom EPS focusing on the detection of the supramolecular structures of polysaccharide fibrils produced by marine diatoms, either attached to the diatom cell wall or released into the surrounding seawater

  • It was concluded that the Bacteriastrum polysaccharide jacket represents an essential part of the cell, as the conjunction of the polymer network with the frustule appears to be extremely tight and such specific and unique patterns were not found in the polysaccharide networks of marine gel imaged by AFM

Read more

Summary

Introduction

Important marine photoautotrophic protists that account for up to 25% of the primary production on Earth [1], produce large quantities of extracellular polymeric substances (EPS), consisting predominantly of polysaccharides [2]. Species of diatoms in the northern Adriatic Sea can produce large amounts, up to 50 g/m3 of extracellular polysaccharides in a month [6], resulting in the episodic formation of a macroscopic gel phase [7,8]. Intense metabolic activities of microorganisms within gel aggregates (e.g., [9]) result in the formation of sharp microbiogeochemical gradients. The continued presence of sharp microbiogeochemical gradients results in the formation of microbial consortia, structured arrangements of microorganisms exhibiting different but highly specific physiological activities over small spatial scales. We intend to review recent AFM studies of diatom EPS focusing on the detection of the supramolecular structures of polysaccharide fibrils produced by marine diatoms, either attached to the diatom cell wall or released into the surrounding seawater

Basic Principles of AFM and Its Application to Polysaccharides
AFM Studies of Diatom EPS
EPS of Cylindrotheca Species
Biofilm of Cylindrotheca Closterium
Polysaccharide Network in Diatom Colony Formation
AFM of Marine Gel
Imaging a Polysaccharide Network of Marine Gel
Force Spectroscopy of a Marine Gel Network
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.