Abstract

Marine biodiversity and derived ecosystem services are critical to the healthy functioning of marine ecosystems, and to human economic and societal well-being. Thus, an understanding of marine biodiversity in different ecosystems is necessary for their conservation and management. Coral reefs in particular are noted for their high levels of biodiversity, and among the world’s coral reefs, the subtropical Ryukyu Islands (RYS; also known as the Nansei Islands) in Japan have been shown to harbor very high levels of marine biodiversity. This study provides an overview of the state of marine biodiversity research in the RYS. First, we examined the amount of English language scientific literature in the Web of Science (WoS; 1995–2017) on six selected representative taxa spanning protists to vertebrates across six geographic sub-regions in the RYS. Our results show clear taxonomic and sub-region bias, with research on Pisces, Cnidaria, and Crustacea to be much more common than on Dinoflagellata, Echinodermata, and Mollusca. Such research was more commonly conducted in sub-regions with larger human populations (Okinawa, Yaeyama). Additional analyses with the Ocean Biogeographic Information System (OBIS) records show that within sub-regions, records are concentrated in areas directly around marine research stations and institutes (if present), further showing geographical bias within sub-regions. While not surprising, the results indicate a need to address ‘understudied’ taxa in ‘understudied sub-regions’ (Tokara, Miyako, Yakutane, Amami Oshima), particularly sub-regions away from marine research stations. Second, we compared the numbers of English language scientific papers on eight ecological topics for the RYS with numbers from selected major coral reef regions of the world; the Caribbean (CAR), Great Barrier Reef (GBR), and the Red Sea (RES). As expected, the numbers for all topics in the RYS were well below numbers from all other regions, yet within this disparity, research in the RYS on ‘marine protected areas’ and ‘herbivory’ was an order of magnitude lower than numbers in other regions. Additionally, while manuscript numbers on the RYS have increased from 1995 to 2016, the rate of increase (4.0 times) was seen to be lower than those in the CAR, RES, and GBR (4.6–8.4 times). Coral reefs in the RYS feature high levels of both endemism and anthropogenic threats, and subsequently they contain a concentration of some of the world’s most critically endangered marine species. To protect these threatened species and coral reef ecosystems, more data are needed to fill the research gaps identified in this study.

Highlights

  • Biodiversity research provides the basis to guide ecosystem management, and to preserve services and goods that are critical to the economic value of the planet (Costanza et al, 1997; Mace, Norris & Fitter, 2012)

  • From our Web of Science (WoS) searches for English language papers between 1995 and 2017, we examined 980 papers, which contained information for 1,023 sub-region occurrences

  • Another source of taxonomic and geographic bias likely stems from the presence of specialist researchers, and this was more noticeable in relatively understudied Echinodermata and Dinoflagellata, with one researcher each based in the Okinawa sub-region contributing >20% of the WoS research on each taxa (Echinodermata, T Uehara, 20/50 papers = 40%; Dinoflagellata, S Suda, 9/44 papers = 20.5%; both University of the Ryukyus)

Read more

Summary

Introduction

Biodiversity research provides the basis to guide ecosystem management, and to preserve services and goods that are critical to the economic value of the planet (Costanza et al, 1997; Mace, Norris & Fitter, 2012). Analyses of species diversity and distribution allow the determination of biodiversity hotspots. There is still a lack of diversity information for most marine taxa (Appeltans et al, 2012; Troudet et al, 2017), and this problem is especially prevalent in understudied localities including many in the Indo-Pacific. Such data gaps lead to incomplete or inaccurate knowledge of biodiversity patterns, limiting our ability to determine appropriate conservation measures for species and ecosystem functions (Cardinale et al, 2012; Costello, May & Stork, 2013; Duffy, Godwin & Cardinale, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call