Abstract

It has been shown previously that binding of vesicles and monolayers containing PE (phosphatidylethanolamine) by either erythroid or non-erythroid spectrin proved sensitive to inhibition by purified erythrocyte ankyrin. We tested the lipid-binding affinities of the purified ankyrin-binding domain of beta-spectrin and of its truncated mutants in four ways, by analysing: (1) penetration of 'loose' PE/PC (phosphatidylcholine) monolayers; (2) binding to liposomes in suspension; (3) competition with spectrin for liposomes; and (4) binding of a PE/PC monolayer in a surface plasmon resonance system. The results obtained indicated that the full-length ankyrin-binding domain bound PE/PC mono- and bi-layers with moderate affinity, penetrated monolayers and competed with spectrin for liposomes. Moreover, its truncated mutants that retained the N-terminal part, in contrast with those lacking eight or 38 N-terminal residues (which bound lipid mono- and bi-layers with lower affinity), bound PE/PC mono- and bi-layers with an affinity and capacity comparable with those of the full-length ankyrin-binding domain, and this activity was inhibited by purified erythrocyte ankyrin. The full-length domain, in contrast with the mutant lacking 38 N-terminal residues, induced a small increase in the fluidity of PE/PC membranes when probed with 5'-doxyl stearate, similar to the effect of purified spectrin. Therefore we conclude that the binding site for PE-rich lipids, which is sensitive to ankyrin inhibition, is located in a 38-residue N-terminal fragment of the beta-spectrin ankyrin-binding domain, and that the first eight residues play a key role in this activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.