Abstract

Direct laser interference patterning (DLIP) involves the formation of patterns of light intensity using coherent laser light beams that interfere between them. Light on the ultraviolet (<350 nm) and NIR (800–2000 nm) is absorbed in chromophores present in the polymer structure or in loaded absorbing species (dyes, polymers, nanoparticles). The absorbed light induces photothermal/photochemical processes, which alter permanently the topography of the polymer surface. The success of DLIP at different wavelengths is discussed in relation to the optical/thermal properties of the polymers and previous data on laser ablation of polymers. The size of the pattern is related directly to the wavelength of the light and inversely to the sine of the angle between beams and the refractive index of the external medium. In that way, nanometric structures (<100 nm) could be produced. Since the patterning occurs in a single short pulse (<10 ns), large surfaces can be modified. Both bacterial biofilm inhibition and human cell differentiation/orientation have been achieved. Large improvements in technological devices (e.g., thin film solar cells) using DLIP structured surfaces have also been demonstrated. Prospective application of DLIP to common polymers (e.g., Teflon®) and complex polymeric systems (e.g., layer-by-layer multilayers) is discussed on the basis of reported polymer data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call