Abstract

Alveolar macrophages play a vital role in a variety of lung diseases, including tuberculosis. Thus, alveolar macrophage targeted anti-tubercular drug delivery through nanocarriers could improve its therapeutic response against tuberculosis. The current study aimed at exploring the efficacy of glyceryl monostearate (GMS)-based solid-lipid nanoparticles (SLNs) and their mannose functionalized forms on the alveolar macrophage targeting ability of an anti-tubercular model drug, rifampicin (Rif). Rif-loaded SLNs were accomplished by the solvent diffusion method. These carriers with unimodal particle size distribution (~170 nm) were further surface-modified with mannose via Schiff-base reaction, leading to slight enhancement of particle diameter and a decline of drug loading capacity. The encapsulated Rif, which was molecularly dispersed within the matrices as indicated by their XRD patterns, was eluted in a sustained manner with an initial burst release effect. The uptake efficiency of mannose-modified SLNs was remarkably higher than that of corresponding native forms on murine macrophage Raw 264.7 cells and human lung adenocarcinoma A549 cells. Eventually, the mannose-modified SLNs showed a greater cytotoxicity on Raw 264.7 and A549 cells relative to their unmodified forms. Overall, our study demonstrated that mannose modification of SLNs had an influence on their uptake by alveolar macrophages, which could provide guidance for the future development of alveolar macrophage targeted nanoformulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call