Abstract

Literature has highlighted the practical use of solid lipid nanoparticles (SLNs) in research, but few reports have combined SLNs with miRNA-based therapy. We aimed to prepare SLNs to load anti-miRNA oligonucleotide (AMO) for miRNA-based therapy in vitro. SLNs were employed to encapsulate AMO by a solvent diffusion method, and then the properties of AMO-CLOSs (cationic lipid binded oligonucleotide (AMO)-loaded SLNs) were characterized. We studied cellular uptake and activation properties of AMO-CLOSs in A549 cells, including antisense efficiency, cell migration and invasion. AMO-CLOSs were 187nm in size and 46.6mV in zeta potential with an approximately toroid morphology in the TEM image. AMO-CLOSs uptake by A549 cells was increased significantly higher and more effective than free AMO. Further results demonstrated that AMO-CLOSs showed high antisense efficiency of microRNA-21 and subsequently decreased the proliferation, migration and invasion of tumor cells. These findings suggest that AMO-CLOSs represent a potential new approach for carrying anti-miRNA inhibitors for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call