Abstract

ABSTRACTThe molecular properties of polymer brushes composed of polyimide with polymerization degree 50 and loosely grafted poly(methyl methacrylate) chains of variable length (PI-graft-PMMA) were studied by viscometry, dynamic light scattering, and equilibrium electro-optical Kerr effect methods in a diluted solution. It was established that the intrinsic viscosity and hydrodynamic dimension of PI-graft-PMMA copolymers increase when the electro-optical Kerr constant decreases with the elongation of PMMA side chains in the range of 40–110 monomer units. The observed difference in the solution properties of the copolymers was explained by their side-chain interactions in spite of a large distance between the neighboring grafting points typical of “loose brushes.” A strong effect of the chain rigidity and dipole structure on solution properties of the studied samples was demonstrated. The Kuhn segment lengths for PI-graft-PMMA copolymers were estimated to vary in the range 3.8–12.1 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.