Abstract

Plants evolved specialized metabolic pathways through gene duplication and functional divergence of enzymes involved in primary metabolism. The results of this process are varied pathways that produce an array of natural products useful to both plants and humans. In plants, glucosinolates are a diverse class of natural products. Glucosinolate function stems from their hydrolysis products, which are responsible for the strong flavors of Brassicales plants, such as mustard, and serve as plant defense molecules by repelling insects, fighting fungal infections, and discouraging herbivory. Additionally, certain hydrolysis products such as isothiocyanates can potentially serve as cancer prevention agents in humans. The breadth of glucosinolate function is a result of its great structural diversity, which comes from the use of aliphatic, aromatic and indole amino acids as precursors and elongation of some side chains by up to nine carbons, which, after the formation of the core glucosinolate structure, can undergo further chemical modifications. Aliphatic methionine-derived glucosinolates are the most abundant form of these compounds. Although both elongation and chemical modification of amino acid side chains are important for aliphatic glucosinolate diversity, its elongation process has not been well described at the molecular level. Here, we summarize new insights on the iterative chain-elongation enzymes methylthioalkylmalate synthase (MAMS) and isopropylmalate dehydrogenase (IPMDH).

Highlights

  • Introduction to the GlucosinolatesGlucosinolates are amino acid-derived plant-specialized metabolites that are largely found within the members of the family Brassicaceae, which includes vegetables such as broccoli, cabbage, and mustard, as well as the model plant Arabidopsis thaliana [1]

  • The aliphatic glucosinolates are derived from methionine, alanine, leucine, isoleucine, or valine; aromatic glucosinolates are built from phenylalanine or tyrosine; and the indole glucosinolates originate with tryptophan

  • A series of reactions catalyzed by methylthioalkylmalate synthase (MAMS), isopropylmalate isomerase (IPMI), and isopropylmalate dehyioalkylmalate synthase (MAMS), isopropylmalate isomerase (IPMI), and isopropylmalate dehydrogethioalkylmalate synthase (MAMS), isopropylmalate isomerase (IPMI), and isopropylmalate dehydrogenase (IPMDH)

Read more

Summary

Introduction to the Glucosinolates

Glucosinolates are amino acid-derived plant-specialized metabolites that are largely found within the members of the family Brassicaceae, which includes vegetables such as broccoli, cabbage, and mustard, as well as the model plant Arabidopsis thaliana (thale cress) [1]. They have been reported in 14 other families from the order Capparales, as well as in the family Euphorbiaceae from the genus Drypetes, which is unrelated to other glucosinolate-containing families [2]. Glucosinolate are involved communicating a range of information pertaining to plant defense against products are in involved in communicating a range of information pertaining to plant deinsects, bacteria, and bacteria, fungi Some such as isothiocyanates, can be fense against insects, and hydrolysis fungi. Glucosinolate engiengineering in plants and production platforms such as bacteria offer useful tools for the application of these natural products in plant defense, agriculture, human health, and animal nutrition

Glucosinolate Biosynthesis
Aliphatic
Glucosinolate
Aliphatic Chain-Elongation
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.