Abstract

Rule-based password generation is one of the most effective and often employed techniques in the highly compute-intensive password recovery process. However, it is challenging to design and maintain a practical password mangling ruleset, which is a time-consuming task requiring specialized expertise. This paper therefore introduced MDBSCAN (Modified Density-Based Spatial Clustering of Applications with Noise), a novel density-based cluster approach in machine learning, to build an automatic password mangling rule generator. To evaluate the proposed method, cross-checks across 4 different real-world password datasets leaked from popular Internet services and applications are adopted. The results indicate that the proposed generator could produce high-quality mangling rules with a better hit rate and enhance current mangling rules by identifying hidden or omitted rules. The proposed approach also shows strong interpretability and computational efficiency. When examining the RockYou password dataset with the top 77 rules, the hit rate may rise by 11% to 104% proportionally to other well-known solutions. Furthermore, by combining the top 77 rules generated by MDBSCAN with those from other rulesets, 3–12.67% more real-world passwords can be retrieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.