Abstract
Femtosecond laser processing combines highly accurate structuring with low residual heating of materials, low thermal damage, and nonlinear absorption processes, making it suitable for the machining of transparent brittle materials. However, with high average powers and laser pulse repetition rates, residual heating becomes relevant. Here, we present a study of the femtosecond laser pulse-on-demand operation regime, combined with regular scanners, aiming to improve throughput and quality of processing regardless of the scanner’s capabilities. We developed two methods to define the needed pulse-on-demand trigger sequences that compensate for the initial accelerating scanner movements. The effects of pulse-on-demand operation were studied in detail using direct process monitoring with a fast thermal camera and indirect process monitoring with optical and topographical surface imaging of final structures, both showing clear advantages of pulse-on-demand operation in precision, thermal effects, and structure shape control. The ability to compensate for irregular scanner movement is the basis for simplified, cheaper, and faster femtosecond laser processing of brittle and heat-susceptible materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.