Abstract

Sapphire has shown broad application prospects in military and medical fields, due to its high hardness, excellent corrosion resistance and high transmission in the infrared band. However, these characteristics have also brought about lots of difficulties in machining or chemical etching the material. Femtosecond laser processing with excellent characteristics including small heat-affected zones and high processing resolution ratio, has become an emerging field. Therefore, it has important application prospects and has found increasingly wide applications in the fields of material modification and high-quality fabrication of three-dimensional micro-nano structures and devices. In this paper, we propose a method in which femtosecond laser processing based on multi-photon absorption is used to process sapphire beyond the optical diffraction limit. In this work, femtosecond laser with a central wavelength of 343 nm is focused on the sapphire and the surface of sapphire is scanned with the high-precision piezoelectric positioning stages. Nano structures each with a width of about 61 nm are obtained, and the minimum space between the nano structures could be as short as about 142 nm. Further, the influences on the processing resolution from laser power and scanning speed are investigated and the generation mechanism for the nano-ripple structure is discussed. Finally, femtosecond laser processing on the sapphire with a resolution beyond the optical diffraction limit is achieved. This work provides a reference for processing the hard and brittle materials by femtosecond laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.