Abstract

This paper presents a model for serial multi-stage manufacturing systems facing variability from two sources. One source is demand uncertainty; the other is manufacturing uncertainty associated with all manufacturing stages. A production control policy based on the planned lead time and the manufacturing capacity requirement is developed. It is shown that this production control policy has the effect of reducing the variance of production output for all manufacturing stages. Some specific analyses are provided to illustrate the production control policy developed. The model developed provides a vehicle for examining the interrelationships among the production output, the planned lead time and the actual manufacturing flow time. The risk-pooling value over both demand randomness and manufacturing uncertainty, which is achieved through consolidating some manufacturing capacity and deploying flexible capacity among the manufacturing stages, is analyzed. This risk-pooling value can be realized in the form of either reduced manufacturing flow time or increased effective capacity to meet more demand. It is shown that the risk-pooling value increases as the planned lead time decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.