Abstract
A fundamental strategy for utilizing green energy from renewable sources to tackle global warming is the microgrid (MG). Due to the predominance of AC microgrids in the existing power system and the substantial increase in DC power generation and DC load demand, the development of AC/DC hybrid microgrids (HMG) is inevitable. Despite increased theoretical efficiency and minimized AC/DC/AC conversion losses, uncertain loading, grid outages, and intermittent complexion of renewables have increased the complexity, which poses a significant threat toward system stability in an HMG. As a result, the amount of research on the stability, management, and control of HMG is growing exponentially, which makes it imperative to recognize existing problems and emerging trends. In this survey, several strategies from the most recent literature developed to address the challenges of HMG are reviewed. Power flow analysis, power sharing (energy management), local and global control of DGs, and a brief examination of the complexity of HMG’s protection plans make up the four elements of the review technique in this article. During critical analysis, the test system employed for validation is also taken into consideration. A comprehensive review of the literature demonstrates that MILP is a frequently employed technique for the supervisory control of HMG, whereas tweaking bidirectional converter control is the most common approach in the literature to achieve efficient power sharing. Finally, this review identified the limitations, undiscovered challenges, and major hurdles that need to be addressed in order to develop a sustainable control and management scheme for stable multimode HMG operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.