Abstract
Two-dimensional (2D) mesoporous transition metal oxides are highly desired in various applications, but their fast and low-cost synthesis remains a great challenge. Herein, a Maillard reaction inspired microexplosion approach is applied to rapidly synthesize ultrathin 2D mesoporous tin oxide (mSnO2). During the microexplosion between granular ammonia nitrate with melanoidin at high temperature, the organic species can be carbonized and expanded rapidly due to the instantaneous release of gases, thus producing ultrathin carbonaceous templates with rich functional groups to effectively anchor SnO2 nanoparticles on the surface. The subsequent removal of carbonaceous templates via calcination in air results in the formation of 2D mSnO2 due to the confinement effect of the templates. Pd nanoparticles are controllably deposited on the surface of 2D mSnO2 via in situ reduction, forming ultrathin 2D Pd/mSnO2 nanocomposites with thicknesses of 6-8 nm. Owing to the unique 2D mesoporous structure with rich oxygen defects and highly exposed metal-metal oxide interfaces, 2D Pd/mSnO2 exhibits excellent sensing performance toward acetone with high sensitivity, a short response time, and good selectivity under low working temperature (100 °C). This fast and convenient microexplosion synthesis strategy opens up the possibility of constructing 2D porous functional materials for various applications including high-performance gas sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.