Abstract

Mesoporous transition metal oxides (MTMO) with large surface area, nanocrystalline framework, and controlled porosity have brilliant prospects in fields such as energy, environment, catalysis, or nanomedicine. However, the green, reproducible, and scalable production of MTMO are still a bottleneck for their industrial applications. Although spray-drying methods permit to obtain MTMO in a potentially scalable fashion, the use of highly acidic alcoholic precursor solutions presents two main limitations: corrosion and flammability, which hinder their production in large quantities and lower cost. In this work, we present a general, reproducible, simple, and environment-friendly aerosol method for the synthesis of spherical MTMO particles from mildly acidic aqueous solutions. Acetylacetonate and acetate are used as condensation-controlling agents. Mixed oxides of high valence cations (M(IV) such as Ti, Zr, Ce, and their mixed oxides) were prepared with a yield over 95%, virtually without changing the formulation of the precursor mixture, which can be extended potentially to M(III) or M(V) oxides. The replacement of organic solvents by water allows working in air atmosphere, making this approach much safer, cheaper and environmentally friendly than the current aerosol-based routes. We also present the beneficial effect of mesoporous titania spheres as an additive to nickel electrodes used in the hydrogen evolution reaction, as a demonstrator to potential applications. A threefold increase in the electrocatalytic hydrogen production is observed in mesoporous titania-modified nickel electrodes with respect to a pure nickel catalyst. This performance can be further improved ~25% upon UVA-visible irradiation, due to the photoelectrocatalytic effect of the mesoporous TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.