Abstract

Zinc oxide (ZnO) is one of the most versatile semiconductor materials with many potential applications. Understanding the interactions between the surface chemistry of ZnO along with its physico-chemical properties are essential for the development of ZnO as a robust photocatalyst for the removal of aqueous pollutants. We report on the fabrication of nanoparticle-like porous ZnO films and the correlation between the fabrication process parameters, particle size, surface oxygen vacancies (SOV), photoluminescence and photocatalytic performance. The synthesis route is unique, as highly porous zinc layers with nanoscale grains were first grown via magnetron sputtering, a vacuum-based technique, and subsequently annealed at temperatures of 400 °C, 600 °C and 800 °C in oxygen flow to oxidise them to zinc oxide (ZnO) while maintaining their porosity. Our results show that as the annealing temperature increases, nanoparticle agglomeration increases, and thus there is a decrease in the active sites for the photocatalytic reaction. However, for selected samples the annealing leads to an increase of the photocatalytic efficiency, which we explain based on the analysis of defects in the material, based on photoluminescence (PL). PL analysis showed that in the material the transition between the conduction band and the oxygen vacancy is responsible for the green emission centered at 525 nm, but the photocatalytic activity correlated best with surface states—related emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.